Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Shu-Ping Zhang, Zhao-Di Liu, Song Yang, Xiao-Yang Qiu and Si-Chang Shao*

Department of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China

Correspondence e-mail: shaosic@fync.edu.cn

Key indicators

Single-crystal X-ray study
$T=566 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.046$
$w R$ factor $=0.120$
Data-to-parameter ratio $=12.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4-(4-Ethoxyphenyl)-3,5-di-2-pyridyl-4H-1,2,4-triazole

In the title compound, $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}$, the two pyridyl rings form dihedral angles of 30.0 (1) and 21.0 (1) ${ }^{\circ}$ with the triazole ring, and the dihedral angle between the triazole and benzene rings is $71.4(1)^{\circ}$. The crystal packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

1,2,4-Triazole and its derivatives constitute a promising class of ligands that are widely used in the synthesis of various complexes (Haasnoot, 2000). It is possible to produce complexes with different structures and properties, using the extensive coordinating capabilities of the N atoms of the triazole ring. We report here the crystal structure of the title compound, (I).

(I)

In (I), the pyridyl groups and the benzene ring lie in a propeller arrangement around the central 1,2,4-triazole ring (Fig. 1), thereby minimizing the steric effects among these rings. The dihedral angles between the 4-ethoxylphenyl ring and the two pyridyl rings ($\mathrm{N} 5 / \mathrm{C} 3-\mathrm{C} 7$ and $\mathrm{N} 4 / \mathrm{C} 8-\mathrm{C} 12$) are 70.9 (1) and $67.0(1)^{\circ}$, respectively. The two pyridyl rings form dihedral angles of 30.0 (1) and $21.0(1)^{\circ}$, respectively, with the triazole ring, and the dihedral angle between the triazole ring and the benzene ring is $71.4(1)^{\circ}$. The crystal packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 1).

Experimental

Compound (I) was synthesized according to a literature method (Zhang et al., 2004). Equivalent amounts of p-ethoxyphenylphosphazoanilide and N, N^{\prime}-dipyridoylhydrazine were reacted in N, N^{\prime}-dimethylaniline for 3 h at 463 K , with stirring. Colourless blockshaped crystals were obtained by slow evaporation of an acetone solution. The crystals were collected and dried in a vacuum desiccator using anhydrous CaCl_{2} (yield 52%). Analysis found: C 69.89, H 5.02, N 20.44\%; calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C} 69.96$, H 4.99, N 20.40%

Received 12 August 2005 Accepted 19 August 2005 Online 31 August 2005

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}$
$M_{r}=343.39$
Triclinic, $P \overline{1}$
$a=8.094(5) \AA$
$b=9.468(6) \AA$
$c=13.152(8) \AA$
$\alpha=104.657(9)^{\circ}$
$\beta=92.706(8)^{\circ}$
$\gamma=115.133(8){ }^{\circ}$
$V=868.9(9) \AA^{\circ}$
$Z=2$
$D_{x}=1.312 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1021 reflections
$\theta=4.6-27.3^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, white
$0.20 \times 0.18 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.983, T_{\text {max }}=0.992$
4239 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.120$
$S=0.87$
2989 reflections
235 parameters

Figure 1
The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank the Education Office of Anhui Province, People's Republic of China, for research grant No. 2005kj137.

References

Haasnoot, J. G. (2000). Coord. Chem. Rev. 200-202, 131-138.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany
Sheldrick, G. M. (1997b). SHELXTL. Version. 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Zhang, S.-P., Liu, H.-J., Shao, S.-C., Zhang, Y., Shun, D.-G., Yang, S. \& Zhu, H.-L. (2004). Acta Cryst. E60, o1113-o1114.

